water transparency
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
The Mooring D is located in the western Ross Sea in Terra Nova Bay. The mooring is equipped with sediment traps, currentometers, trasmissometer, fluorimeter and CTD.
-
Lake Kitaura is typical eutrophic lake in Japan. The maximum and average depth is 10 m and 4.5 m, respectively.
-
Our primary study sites include a set of seven northern Wisconsin and four southern Wisconsin lakes and their surrounding landscapes. The project, which started in 1981, is administered by the Center for Limnology at the University of Wisconsin-Madison.
-
To support the marine biodiversity and ecosystem dynamics research community in Belgium, the Flanders Marine Institute (VLIZ) has set up a local marine biodiversity observatory.
-
The mooring A is located in an open sea area close to Franklin Island, characterized by both clay bottom sediment and a flat morphology. The station can be considered as representative of the productivity and sedimentary conditions of the southern part of the Ross Sea, one of the areas considered to be affected by greater productivity rate.The study of mooring can be consider part of the activities conduct in the framework of the research project "ABIOCLEAR - Antarctic biogeochemical cycles - climatic and paleoclimatic reconstructions. (Resp. M. Ravaioli)". Such Project is the natural prosecution of previous research activity carried out from 1987. Objectives : Study of the particle fluxes towards the marine bottom sediment, in particular with the aim to obtain quali/quantitative estimate of the biogenica component coming from the primary production. Analysis of the vertical rain rate processes and, therefore, the marine cycle of the main biogenic particles such as Carbon and Silica. Try to obtain mass budgets of these parameters, estimating their cycle in the water column until the burial processes in sediments. From apparent accumulate rate calculated in the bottom sediment we will tried to discriminate the real vertical fluxes (Rain Rate) from the horizontal input from sediment remobilization processes. Acquisition and elaboration of long time series of data. Collection of bottom Sediment samples to estimate the variations of the productivity and the paleoproductivity in the area. Historical time series of Mooring A: Primary productivity data (every three years), fitoplancton, New and regenerated productivity, Seasonal, annual and interannual fluxes measure, monthly Particles samples, current velocity, water salinity, temperature and torbidity, Water-sediment interface measure. Biogeochemical parameters. Radiometrical Data, Mineralogical and grain size characterization. Nutrient, metals. Biostratigraphy interpretations. Lidar data are also available from 1997.
-
Measurements of lake physics (including e.g. water temperature, alkalinity, conductivity, oxygen and Secchi depth) are part of lake monitoring, which is usually carried out by monthly sampling at many regular lake sites (5 to 17 sites depending on the intensity of the measurements over the years). The integrated sample represents the whole water column of this polymictic shallow lake with a mean lake depth of 1.2m. The measurement satisfy the analytical standards of Ö-Norm in Austria. In case of water temperature, also depth profiles were measured during some sampling periods.
-
The site consists of a marine databuoy equipped with a suite of sensors that monitor water quality parameters and acoustic receivers for the detection of Porpoises and tagged fish. The buoy is moored near an offshore windmill farm, approx. 30km off the coast on the Belgian Continental Shelf.
-
Piburger See is a small mountain lake in the Eastern Alps (Austria) and was part of the OECD study on eutrophication (OECD, 1980). This lake experienced cultural eutrophication during several decades in the 20th century. In the 1950s and 1960s, recreational activities increased with a concurrent rise in tourism, and increasing amounts of fertilisers were used on nearby fields (Pechlaner, 1968). This resulted in enhanced primary production and rising hypolimnetic oxygen depletion in the lake (Pechlaner, 1979). Lake restoration started in 1970 by exporting anoxic and nutrient-rich hypolimnetic waters with an Olszewski tube (Pechlaner, 1971, 1979). External nutrient loading was reduced by altering fertiliser application and by diverting sewage from a public bath (Psenner, Pechlaner & Rott, 1984). After the installation of the Olszewski tube in June 1970, phytoplankton biomass increased, accompanied by an increase in chlorophyll "a" and total phosphorus (TP) (Rott, 1983; Tolotti & Thies, 2002). The period from 1970 until 1988 was characterised by a marked increase in the filamentous cyanobacterium Oscillatoria limosa C.A. Agardh, which became the dominant algal taxon in the lake and contributed up to 40% to the mean annual phytoplankton biovolume (Rott, 1976; Wolf, 1991). The response of phytoplankton biovolume to lake restoration was delayed by two decades and re-oligotrophication of Piburger See began during the late-1980s (Pechlaner, 1979; Rott, 1983; Pipp & Rott, 1995). At present, Piburger See is oligomesotrophic (Tolotti & Thies, 2002). Since the early 2000s, chlorophyll "a" and phytoplankton biovolume values suggest a reversing trend in lake trophic status with a rising contribution of diatoms including blooms of Asterionella formosa (Tolotti et al., 2005; Tolotti net al. 2012, Thies et al. 2012). Monitoring of lake water quality, control of deep water siphoning discharge and operation of gauges are current activities at this site. A rowing boat for lake water sampling is available. A smaller part of the lake has the status of a research area. During summer, tourism is an important factor at this site (public bath, rowing boats, angling, swimming, walking).
-
The Abrolhos Bank is located along the eastern Brazilian coast and is characterized by an enlargement of the Brazilian shelf (~46.000 km2), reaching approximately 200 km in width. The Abrolhos Bank encompasses three main megahabitats and a complex bathymetry. Rhodolith beds comprise the largest megahabitat, with 20,904 km² (43% of the mapped area), followed by unconsolidated sediments' megahabitat covering 19,151 km2 (39%) and by the reefal megahabitat with 8844 km2 (18%). Rhodolith beds and unconsolidated sediments are topographically less complex and form larger continuous extensions when compared to the reefal megahabitat, which is structurally complex and more patchily configured, even when examined at the regional scale.
-
The research activities in the lagoon, as well as the understanding of natural phenomena, are directed to the study of the ecological effects of the major pressures acting on the system, including which the input of nutrients from agricultural and urban sources, industrial activity and port (Porto Marghera, Venice Maritime Station, the commercial port in Chioggia), the release of pollutants accumulated in sediments, the intense traffic ships and smaller boats,, the morphological trivialization. In recent decades the Tapes philippinarum has generated problems related to collection techniques. Is focusing attention to the increasing presence of alien species both plant that animals.